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There is proved an exi6tence and uni~plwurc theorem for the solutions of dyn- 
amic prxWuns of the n-r elastkity theory of finite dtfomutfonr, in the 

SoboW s~g~e Bi (Q). ThQ SOIMOII of an aDoQgour problem fat &as&al 
elaatlclty theorywith small deikmationa and a linear elasticity law is based 
on the Kom inequality Cl]. Qurvtiolu of the euistenee and uniquenem of solut- 
ions of linear and qusilbar equations of evolutionary type have been studied 
in [2- 43. 

l, Formulation of the problem. Letabodyinthenatrualunde- 
formed state occupy a domain a in R* with the boundary I’ = 8a. A one-para- 
meter grasp of mappings gt: 52 + 88 gives the motion of an elastic body 

gf :a+r = a+u(a,t), FERN (1.1) 

Here a (a~, aa, as) E Q are Lagrange coordinatea of points of the body in a certain 
inertial coordinate qutem, 

Assuming the body homogumau and isotropic, u E V (Sz), u’ E Ho (fid), where 
V (a) and H,, (52) are the Banach and Hilbert spacer, respectively, we represent 

the functiouab of the kinetic and potential elastic energies as 

T [u’l = + p (Ii, u’) +Al’“da (u’= Dtu) 
a 

(1.2) 

E [u] = j e(IE, IIE, IlIE) da (da = da&&as) 
Q 

&re p is the density of the body in the natural state, which we shall henceforth oon- 
sider to be one, e: RS + Rtl is the specific elastic strain energy, IE, IIE, IIIE 
are invariants of the finite strain tensor E51 

E = ‘/2 (U + UT + UTU), U = (uij = aUJbj) (1.3) 

The functional space V = {u: E [u] < + 00) is the Sobolcv space (Wpl 

(i2))8 or a manifold therein, where CSI 

W,l(ZI)={u:(~l~~D~uJPdu)l’P<~} 
Q 

Let us amme that v c (TV,1 (a)y ieb~ H, (Q) and that there is an element in 

W&e (W (0 < a \< 1) on which the potential energy E Eul is not~defined. 

lnthissensethespace H,(Q) is the broadeat space in which the potentid enmgy 
iiulctiwl is de&led. 
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The equations of elastic body motion follow from the D’Alembert - Lagrange prin- 
cipie of possible displacements in the form 

(u”, 6~) + (VE [ul, 8~) - (f, 6u) - (F, 6~)~ = 0, 6u E V (1.41 

(VE 1~1, W = [ k 2 - i&j da, 
Q&j=1 ‘j 

(lx”, 6u) = p u”8u da a 
(f, 8~) = s f8u da, 

Q 

(F, 8u)r = $ F&u da 
I? 

Here F is the external surface force, f is the internal force, 6u is the vector of 
posstble displacements. It is assumed that the external surface forces are given on a 
part of the boundary T(F, while displacements 

aEfU,u=U(n,t) (rU nrF= @,r, UrFSr) (1.5) 

are given on the rest. 
The linear manifold VO = {u: U E v, U IQ, = U (a, t)] C V will be a 

configuration space of the system in this case. 
The function u (a, t) should satisfy conditions of the theorem on traces on ru : 

if Q is an open domain in RS whose boundary r is an infinitely differentiable orie- 
nted mauifold of dimeusionality 2 relative to which 52 is found locally on one side, 
then the trace yu of the function U EZ HI (52) is a function belonging to Hq, (r) 
and the mapping HI (Q) ..+ H,,, (r) is linear and continuous, i. e. 

II YU IlE,,@, < e I u IIHlfW 
(1.6) 

Here the constant c is independent of u [63. Furthermore, we assume that there 
exists a function uO (a, t) E V and yuo IrV = U (a, t). The time is consider- 
ed as a parameter here. The mentioned conditions for smoothness of the function 
U (a, t) are usually satisfied in applications. 

Letusset v = u - ug and let us define the linear space 

v,=(V:VEV,v]r~=O)CNr(8) 

The possible displacements of the system are 6~ = 6v E V,. The space vs 
is a configuration space of the system, and the direct product V, x HO is a phase 
space of the system (Ha = (Ls (Q))S). 

The problem (1.4) becomes 

(v*‘, 6~) + (VE fv + uo], 6v) - (to, 8~) - (F, 6~)~ = 0, Vdvez Vo (‘* 7, 

v (a, t) jr, = 0 (f0 = f - Ug*‘) 

v (a, 0) = u (a, 0) - u. (a; 0) s v0 (a) E V. 
v’ (a, 0) = u’ (a, 0) - uo* (a, 0) s vg* (a) E Ho 

The existence and uniqueness of solutions of problem (1.7) are examined below. 
All the integrals in (1.7) will have meaning if 

V.', VE [v + ~01, foev’, Fes_,,,(r) (1.8) 
Here v and H-I/,(~) are spaces conjugate to the spaces T’, and EiT,,, (r) res- 
pectively [63. 
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2. Existence theorem of the solutions. Letthemapping 
VE M: V, + V’ satisfy the Lipschitx condition 

II VE lu’l - VE Iu”l11-1 <L )I u’ - u” 111, Vu’, u” E vo, L > o (2. 1) 

am II * II-I, II * III are norms in H-1 (Q) and Hr (a) , rtrpectivdy. We 

amme that for any x > 0 there are such posttive co&ant~ kl and k, that 

Wuh2\<E [~l+~ll~l)~~dkrlluIl~~, VUEV, (2.21 

Here I{ . IjO is the norm in I-I,, (a). 
with respect to the external forces and displacements on part of the boundary, we 

assume compliance with the conditions 

fiv fi’ E 4, (Q), Q = Q X LO, Tl (T > 0) (2.3) 

Fi, Ft’ E L, (x), 2 = I’ x [O, TI (i = 1, 2, 3) 

ui*c, U,*‘, U:“, U:- E L, (0, T; &,(r)) 

Hue U** agreed with Ui Oil l?ty. 

T h e o r e m. If the poteutial energy functional satisfies c,atdMons (2 1) and 
(2.21, and the extemal forces and di#acements U on I'u satidy the condftions(2.3) 
and 

u (a, 0) E VO (Q), u* (a, 0) E Ho (Q) (24) 

then the problem (1. ‘7) has a solution and 

v (a, r) cz ~5, (0, T; VO), v’ (a, t) E L, (0, T; Ho) (2.5) 

v” (a, t) EL, (0, T; V’) 

N Q t e 1. The tit two conditions in (2.3) can be weakened by assuming 

f, f’ E J% (0, T; H_, @)I. F, F’ E La (0, T; H_alI (I’)) 

However, the first two conditions of (2.3) are comple~y adequate for physical 
problems. . 

N o t e 2. The functton II* in the last condition of (2.3) is a continuation of 
the function (I given on rn to the whole mantfold I?. It follows from the last 
condition in (2.3) and the theorem about traces that there exists a function U, (a, t) 
such that 

u,,, h’, q,“, w,“’ E La (0, I’; HI (WI 

Then the imbeddings for the initial conditions in (1.7) are valid, and f, from 
(I. 7) satisfies the CMCWO~ foi, foi’ E Ls (Q) (i = 1, 2, 3). 

N o t e 3. In the case of a linear elasticity law and small deformations, the 
inequality (2.2) follows from the Kom inequality Cl]. 

The proof of the theorem fs based on aplaring the Galerkin method to construct 
successive approximatious of the solutkon in tWte4m*Jldonrt space& to estimate 
meir bmud&mss m the system phare space, and to prove that the limit function Sat- 

isfies (1.7). 
Construction of the approximate solutions. Byusing 

the property of separabikity of the space V,, we select the his {%~LI &b 
onormalixed in the sense of Ho (Q) by assuming WI= v. / II v. Ilo. Let VI@?‘) 
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be a finite space of linear cornbiM~o~ of the vectors (WI, ‘ * *, T-n), VP) C Tr,. 
Let us call the function I+@ E VOfm) satisfying the equation 

(v**(~), Bv) + (VE [vcrn) + u,], 5v) - (fo, 6~) - (2.6) 

(F, Wr = 0, Y6v 6.z vhrn) 

and the initial conditions V(~) a ( % 0) = v. (a), Y* (a, 0) = vOm’ (a) and approxi- 
mate solution of (1.7) (vOm’ (a) is the projection of vg’ on VJ”f). Equation(2.6) 
is equivalent to a system of ordinary differential equtions of order 2m. Setting 

m . 

V(m) = i21 Qim (t) wi 
=F 

and repl=ing 6V in (2.6) by q (i = 1, . . _, m), we arrive at the system 

tl;h i- ivE [&hm% -i- uo] 7 W) - (fo, wi) - (F, wifr = 0 
c2.v 

(i = 1,. . . , m) 

We show that the system (2.7) satisfies the Lipschitz condition, which means that 
there is a unique solution in a certain segment [O, T,J. Using the Euclidean metr- 
ic in the space VP) and (2. l), we arrive at the estimate 

It hence follows that the Lips&it2 condition is satisfied with a constant for the sy- 
stem (2.7) (1 et us note that (2.7) is a second order equation) 

L (M) = max (1, L\z;; II wi 111”). 
. 

The constantt(m)grows as in the dimensionality m of the space increases, and 
also because of the growth of maxlG+Grn // wi fllz. 

Thenfore, according to the existence and uniqueness theorem for solutions of ord- 
inary differential equations, the solution (2.7) exists and is unique on some segment 

[O, TmI and Tm -to as m-t=). 
Uniform boundedness of the solution. Thepossibility 

of continuing the solutions (2.7) in a certain segment [O, T] independent of m 
results from the uniform benders of all the solutions inde~d~tly of the number 
m and the system phase space V, x Ijr,. 

Let us replace 6v in (2.6) by v'(~) and let us integrate the expression obtained 
with respect to the time between 0 and t. We obtain 

+rl v’(m) /lo2 -+/I v’(‘“) (0) [I,,” + E [v(m) + uo] - E [ vo + uo @)I= (2.9) 
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t 

S I(fot v’ f m ‘) + (F, v’(~))F + (VE [vfrn) + II,,], uo’)l dt 
0 

Using the Young inequality, integration by parts, and conditions (2.3) and (2.4). 
we estimate the integral in the tight ride of (2.9) 

II K&11 foln: + tt F u"r .-?3 +- -+(I + c2) il +) /I2 + ( 2.10) 

-&UI fo (0) 11s + (1 f c2) II vo III” + II F (0) If%+1 + 

1 

S tll f,' ItI e II VI: ,-'!r + (1 + c2 + L2) II drnJ JJr" + 
I; Ug'ilI" + A" If uo Ill"1 a 

Here e is any positive rumbet, c is the constant in the inequality (1.61, and 
II * Ilr, -vr is the norm in NIV,, (I?). 

Ac@g to (2.2) 

E [v@@: + uof > k il v(m) + uo tjr” - x II d*) f ~0 /I$ ( 2.111 

0 

Hue CL is a positive con&m& common to all functions from HO (Q). 
The inequalttiea (2.10) - (2.12) permit obtaining the following estimate from 

(2.9) 

w4 + +-II V'Crn) (0) Ilo" + f {(1 + ca + La) 11 v('") 111" + 

0 

+ [~G(O)I]“-1+ (1 + c2) II 170 III" m!- It F (0) IlhJ + 



Solutions of certain classes of dynamic problems 131 

The function YS is positive, bounded, and independent of m . Using the 

Gronwall inequality for the estimate (2.14) C31, we have 

h(t) < CC* exp @kCt), 
Corollary: 

1) vlrn) (or v'("')) remains bounded in 
Hll)). 

2) The solution @) can be continued 
3) We have for the functions vtm) and 

L, (0, T,; V,) (or in L (0, T,,,; 

to some time segment T for any m. 
y’(m) 

dm)ELoo (0, T; V,), v*(“%Lop (0, T; Ho) (2.15) 

Convergence of a sequence of approximate sol- 
u t i o n s. It follows from (2.15) that a subsequence V(F) can be extracted from the 
sequence v(“‘) such that v(p) (v’tfi)) will converge weakly to v (v’) in L, (0,T; 

V,) (or h L, (0, T; H,)). 
Let us show that v (t) satisfies the equation and intitial conditions (1.7). We * 

introduce the space of functions 

G= {VP = &~i(r) wit (PIECE (10, Tl), cpi (T) - 0) 

Here PO is a finite integer. Replacing 6~ by Cp in (2.6) and integrating the expre- 
ssion obtained, we find 

T 

S{ ( 
(2.16) 

- v’(*), (P*)+ (VE [v(p) + ~01 ,cp)-(fo,cp) - (Fv cp)rW - 
0 

(~:~,'ccp(O)), VWEG (P = m > PO) 

Passing to the limit in p in (2.16). we obtain 

j (- (v’, cp’) + (VE tv + uol, cp) - (fo, d - (F, cp)r) dt - (vo’, cp<oN, 12’ 17) 
0 

Vcp=G 

Since finite linear combinations of Wi are compact in vO , then (2.17) is valid for 
any q~ E C’ (r0, 2% Vo), cp (2’) = 0. Therefore. the equalitv 

v” + VE Iv + uoJ = Q, W’, ‘d = (fov 0 + (F, cph) (2.18) 

is valid in the sense of distributions in [O, 2’1 with values in To. It hence follows 
that v” E L, (0, T; V’). We see that v (t) satisfies the initial conditions (1.7). 
Let us compare the scalar product of (2.18) and q, E G with (2.17). We obtain 

(vo’, Cp (0)) = (v’ (o), cp (0)) VqeG 
Therefore, v’ (0) = vo’. There. results from the convergence of the sequence 

of approximate solutions that v(u) = v. + v (0), which means that v (0) = v,,. 
Since u = u. + y, we arrive at the deduction that U satisfies all the conditions 
of the theorem. 

3. Lr n i q u e n e s s o f t h e s o 1 u t i o n L Let us prove two theorems 
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setting forth the uniqueueas of the solutian, in the case of stationarity of the solutions 
and in the case of sufficient smoothness of the solutions, namely, u, u’ E HI ($2). 

We introduce the Hamilton functional 

H = ‘12 (P, p) + E [v + ugl - (Q(t), y) (3.1) 

Huep= V*, (0, v) = (f,, Y) + (F, v)~, VV E V,. Let us =pi=e the 
variationai equation (1.7) by the canonical equations 

dpldt = - V,H E -VW+Uol+@(q (3.2) 

dvjdt = VJY z p 

The f&t equation in (3.2) is considered in the apace H-I &I) and the second in 
H0 (Q). 

We aLume that (P, v), (p + Ap, Y + AY) are two sohztions of(3,2) corres- 
pending to the Same initial conditions (AP and Av are zero at the iuiterlhstmt). 
Then the fimcuom Ap and Av are a solutfon of the system of equations 

dAp/dt = - (VE [u + AY] - VE [u]) (3.3) 

dAv/dt = Ap (u = v + u,,) 

Let us. define the functional W (Ap, Av, t) according to the equa&ity 

J+’ = l/s (Ap, Ap) + E [a + A4 - E [u] - (VE [u], Av) (3.4) 

We note that it is a Hamilton functional for (3.3). which means that its total deriv- 
ative has the fallowfng form because of (3.3) 

&W/dt = iW/dt = (VE [u + AY] - VE [u], u’) - (VaE [u] u’, Av) (3.5) 

Theorem (stationary case). Let the solution Y of (1.7) be such 
that u= u,, + Y is indwtit of the time, and the functional E @I is c011vex. 
1. e., 

E [u + W - E @I - (‘OE [ul, Av) a a II Ay JJ12 (3.6) 

(~>W~W~Z<~,~>O) 

Then the solUti0n v is unique. 
N o t e 4. The stattoaary solution corrupnds either to the equilibdum podtion 

of the system fix which the bamdary condition (1.5) and the external fqrccs in (1.4) 
must be acumcd stationary, or to the case when the deformed body is rigidly dispiac- 
cd, 

N o t e 5. Condition (3.6) can be replaced by a condition on thesecond Freshet 
vadation of the functional E [III : 

Ilw-ulh<h(h>O), O”EWAv, W&~llA”lhs 

In fact, let FL (7): [O, II-) Rl andF, (7) = E [II + 76~1 - E [nl - (VE [al, ~Av). 
We have 

dF, (r) / dr = (VE [u + TAV J - BE [u], AY) (3.7) 

jl AY [iI < h, daFl (T) /CM = (VZE [II + tAv] Av, Av) >, Zu (1 Av III* 

Integrating the second equation in (3.7) twice with re+ct to 7, we obtain(3.6). 
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Proof of the theorem, Since u is independent of the time, the 
fimctional w defined by (3.41, also does not contain the time explicitly. It then 
follows from (3.5) that the functional IV (AP, Av) is constant and equal to zero since 

Ap = Av = 0 at the initial time. Because of (3.6), we have for 11 Av 11 I < h 

W (Apt Av) > ‘/a II AP llo2 + a II Av llr2 
Therefore for t E [o, T] we have Ap = Av =: 0 and the solution is unique. 
Theorem (dynamic case). If 

ll’ = v’ + Uo’EHr (Q), 11 U’ III < es 
(3.8) 

WEVo, II w Ilr < c3, (VsE Iwl(Av, Av), u*) < M II Av 111~ 

when c%, ES, &f are positive constants and condition (3.6) is valid, then the solution 
v (t) of (1.7) i 5 unique. 

Note 6. The first condition in (3.8) is satisfied if v’ E ar (9) since %’ 
E V, according to the Note 2. 

Proof of the theorem, Letusconstderthefunction 

F2 (-Y) = (VE fu + rAvJ - VE [II], RI*) - 

(V2E lul u’, zbv) (0 \< z < 1) 

for which the following relations are valid: 

Fs (0) = 0, F, (1) = aVV/at, dFs(O)/dz = 0 

SF, I CM’ = (V*E iu + l;Avl (Av, Vv), II’) 

(3.9) 

Here V2E Iu] and V8E [u] are the second and third Frechet differentials of the 
functional E tul ES]. 

Estimating the right side of the last relationship in (3.9) with (3.8) taken into 
account, we arrive at the inequality 

SF2 / dt2 < M 11 Av I/I” 

Integrating twice with respect to z, we obtain 

F, (I) = aW/ at < VBM II Av III2 
Integrating of (3.5) yields 

(3.19) 

We note that TV (0) = 0, and according to (3.6) we strengthen the inequality 
(3.10): 

+ II AP Ilo’ 4- a II Av III” < ~~(~IIAP Ilo~~~llA~l~~~)~~ 
0 

There follows from the Gronwall inequality 

rE [(A n 92 II AP Ilo2 i- a It Av llr” < 0 

Tbis latter is possible for bp = Av = 0, therefore, the solution is unique. 
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