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There is proved an existence and uniqueness theorem for the solutions of dyn-
amic problems of the nonlinear elasticity theory of finite deformations in the
Sobolev space Hj (Q). The solution of an analogous problem for classical
elasticity theory with small deformations and a linear elasticity law is based
on the Kom inequality (1], Questions of the existence and uniqueness of solut-
ions of linear and quasilinear equations of evolutionary type have been studied
in [2— 4],

1, Formulation of the problem, Letabodyin the natrual unde-
formed state occupy a domain Q in R® with the boundary ' = Q. A one-para-
meter group of mappings gi: Q -» R3 gives the motion of an elastic body

g:a—s>r=a+tufat), rehk
Here a (a;, a4, ag) & Q are Lagrange coordinates of points of the body in a certain
inertial coordinate system,

Assuming the body homogeneous and isotropic, u &= V (Q), u' & H, (Q), where

V (Q) and H, (Q) are the Banach and Hilbert spaces, respectively, we represent
the functionals of the kinetic and poteatial elastic energies as

(1.1

Tu]= -%—P(ll', w) = —;—-pﬁu'z da (u = D) (1.9
Eful = § e(lg, Iz, 1g)da  (da = daydasdas)
Q

Here p is the density of the body in the natural state, which we shall henceforth con-
sider to be one, e: R® — Rl is the specific elastic strain energy, Ig, Ilg, Illg
are invariants of the finite strain tensor [5]

E=YU+UT+UTU), U = (ujj = 0u;/da;) (1.3

The functional space V = {u: E [u] < 4 oo} is the Sobolev space (W'
(R))® or a manifold therein, where [6]

. & 1/p
Wpl(a)={u.(m§1§|paujvda) <oo}
Let us agsume that V C (W, (R))® = H, () and that there is an element in
(Wia ()P (0 < a < 1) on which the potential energy E [u] is not defined.

In this sense the space H; (R) is the broadest space in which the potential ene:gy
functional is defined,
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Solutions of certain classes of dynamic problems 133

The equations of elastic body motion follow from the D'Alembert — Lagrange prin-
ciple of possible displacements in the form

(u”, du) 4 (VE [u], du) — (f, bu) — (F, du)p =0, dusV 1.4

3
(VE [u}], bu) = S 2 _ai;'?'auii da, (u”,du)= §u"éu da

= v

(,8u) = { touda, (F,ou) = { Foudo
Q r

Here F is the extemal surface force, f is the intemal force, Ou is the vector of
possible displacements, It is assumed that the external surface forces are given on a
part of the boundary I'r, while displacements

aEFU,u"JU(a,t) (rUﬂFF= ¢’PUUFF=F) (1.:)}

are given on the rest,

The linear manifold Vo = {w: u & V, ulr, =U(a, )} CV wintbe a
configuration space of the system in this case.

The function U (a, £) should satisfy conditions of the theorem on traceson Iy :
if Q is an open domain in R® whose boundary I' is an infinitely differentiable orie-
nted manifold of dimensionality 2 relative to which  is found locally on one side,
then the trace yu of the function u & H,; (Q) is a function belonging to H,, (T)
and the mapping H, (Q) —» H,;, (T') is linear and continuous, i.e.

I vaflz e < ¢ fuflme
Here the constant ¢ is independent of u [6]. Furthermore, we assume that there
exists a function w, (a, {) & V and 7gug |ry = U (a, #). The time is consider-
ed as a parameter here, The mentioned conditions for smoothness of the function
U (a, t) are usually satisfied in applications.
Let us set v = u — u, and let us define the linear space
Vo == {V:VEV,leU = G}C.Hl(ﬂ)

The possible displacements of the system are 8u = §v & V,. The space V,
is a configuration space of the system, and the direct product V, X H, is a phase
space of the system (H, = (L, (Q))®).

The problem (1.4) becomes

(v", 8v) + (VE [V + W), 8v) — (fo, 8v) — (F,8v)r = 0, VoveV, &7

v(a,t)ry=0 (fo=1—u")

v(a,0)=u(a,0)—u(a,0)=v,(a) =V,
vi(a,0)=u"(a,0)—u (a,0)=vy (@)= H,

(1. 6)

The existence and uniqueness of solutions of problem (1. 7) are examined below.
Al the integrals in (1, 7) will have meaning if

v, VE[v 4wl fHheV, FeEH,I (1.8)

Here V' and H.,,(I') are spaces conjugate to the spaces 'y and Hiy, (T') res-
pectively [6].
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2, Existence theorem of the solutions Letthe mapping
VE [ul: V,— V' satisfy the Lipschitz condition

"y 1

VE]—VEjj<Ljju —u'j;, Vo,uw'eV, L>0 (2.1

Here || - [l-1, || - [l atenormsin H_, (Q) and Hy (Q) , respectively. We
assume that for any % > O there are such positive constants %; and k, that

Bilul® SE [u] +xlull® ke flull?, VueV, (2.2)
Here | - ||, isthenormin H, (Q).

With respect to the external forces and displacements on part of the boundary, we
assume compliance with the conditions
fo M S L@, Q=2 x [0, TI (T >0) %9
Fi, F; Ly (2),2 =T x [0, Tl (i=1,2,3)
U‘i*v U'l*.v U;‘m, Ur“. = L2 (01 T; H‘/: (F))

Here U;* agreeswith U; on Ty,

Theorem. Ifthe potential energy functional satisfies conditions (2.1) and
(2.2), and the extemal forces and displacements U on 'y satisfy the conditions(2. 3)
and

u(@ 0)EV,(Q), u (a0 H,(Q) (2.9
then the problem (1.7) has a solution and
v(a,)E L (0,T;V0), v (a,8)E La(0,T; Ho) (2.5)

vi(a,t)E L (0, T3 V")
Note 1, The first two conditions in (2. 3) can be weakened by assuming
f. £ L0, T H,,(Q), F,F&Ll© T H,,(I)

However, the first two conditions of (2, 3) are completely adequate for physical
problems,

Note 2. The function U* in the last condition of (2 3) is a continuation of
the function U given on T, to the whole manifold TI. It follows from the last
condition in (2, 3) and the theorem about traces that there exists a function u, (a, f)
such that R

Uy, Uy, Wy, W& Ly(0, T H,y (Q)

Then the imbeddings for the initial conditions in (1. 7) are valid, and f, from
(1. 7) satisfies the condition foi,» foi” = Ly (Q) (i =1, 2, 3).

Note 3. Inthe case of a linear elasticity 1aw and small deformations, the
inequality (2, 2) follows from the Kom inequality [1].

The proof of the theorem is based on applying the Galerkin method to constmct
successive approximations of the solution in finite-dimensional spaces, to estimate
their boundedness in the system phase space, and to prove that the limit function sat-
isfies (1.7),

Construction of the approximate solutions. Byusing
the property of separability of the space 7, we select the basis {Wm}me orth-
onormalized in the sense of H, (Q) by asuming wy = v,/ || v, |l,. Let V1™
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be a finite space of linear combinations of the vectors {Wy, . . ., W,.}, V(™ C V,.
Let us call the function v™ & V(™ satisfying the equation
(v, 8v) + (VE [v(m) + o], 8v) — (I, 6v) — (2. 6)
(F,v)r =0, Vévevp{™
and the initial conditions V("™ (a, 0) = v, (a), v (a, 0) = v, (a) and approxi-
mate solution of (1.7) (Vop, (a) is the projection of v, on V(™). Equation(2. 6)
is equivalent to a system of ordinary differential equtions of order 2m. Setting

m
vim = 2_‘11 Gim () W;

and replacing 8v in(2.6)by w; (i = 1, ..., m), we amive at the system
m
Gim + (VE [2.:1 TkmWy + uo] ) Wi) — (fo, W) —(F,wi)r =0 2.7
(i=1,...,m)

We show that the system (2, 7) satisfies the Lipschitz condition, which means that
there is a unique solution in a certain segment [0, 7T,]. Using the Euclidean metr-
ic in the space Vo™ and (2. 1), we arrive at the estimate

(32 [§ o o] S cu]n) T+
[Z1VB[ 3 ginws 0] — VE [ 3 iy + w0] E,
| ws le]% < Lmax || w |, Vml 2' (@im — gim) Wil <
1<igm k=1
L max || w;|,*m [ > (gim — Q;rm)z:\l/z
1sism k=1

1t hence follows that the Lipschitz condition is satisfied with a constant for the sy~

stem (2,7) (let us note that (2, 7) is a second order equation)
L (m) = max (1, Lmmax || w; ||%).
1<ism

The constant L (m)grows as in the dimensionality m of the space increases, and
also because of the growth of maxXicicm | W; [J;2

Therefore, according to the existence and uniqueness theorem for solutions of ord-
inary differential equations, the solution (2.7) exists and is unique on some segment
[0, T,] and Tp, >0 as m — oo.

Uniform boundedness of the solution, The possibility
of continuing the solutions (2.7) in a certain segment [0, 7] independent of m
results from the uniform boundedness of all the solutions independently of the number
m and the system phase space V, X H,.

Let us replace v in (2,6) by V'™ and let us integrate the expression obtained
with respect to the time between O and f. We obtain

IV [ — v (0) o2 + E[v® + up) = E[vo+ U O] = (2.9
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4

{ 1o, vem) + (F, viem)e 4 (VE [vom) 4wl uy)jdt

0

Using the Young inequality, integration by parts, and conditions (2, 3) and (2, 4),
we estimate the integral in the right side of (2, 9)

<o Wbl +IF R ) + 5+ vm™ 24+ (210
5l o (O % + (1 4+ 63 Vo + | F O ] +

4
§ U8+ UF IR, ot (e L9 v 2+
0
o [l* + L* | wo |1s*]1 d2
Here & is any positive number, ¢ is the constant in the inequality (1.6), and
- lr, < is thenormin H.., (I).
According to (2.2)
E (V0™ 4 o] 3> ke | VO™ -t fl1? — x| v(™ - ug g? (2.11)
[4

1™ + ol < 20 v™ ©) +up O) o+ §IvE™ +uolo?dt (2,19
0
Here ¢ is a positive constant, common to all functions from H, ().
The inequalities (2, 10) — (2. 12) permit obtaining the following estimate from
(2.9)

o

SV [ e v 4wl — 3+ A A (219
13
W1 (e) + v © o+ § 1+ ¢+ LA | vem 2 +
0
ey [ v ] dt

We(f) = E (Vo + o (O) + (1 fo 2+ | F ik, ) +

- 6@ + (1 + ¢ [ voll® + I F ), —uul +

3

2 v + o (O) I + § (18" I2a-+ 1 F Il s +
g+ L2 o ? + 2 | 5% e

Taking into account the inequality || VO™ + ug |1 > Yy | v™{ii — [luo [}y
we select & such that Yy [k; — 2 (1 + ¢®)] = u; > 0. Then we have form(2. 13)

and the inequality || "'(m: O fle <l Vo llo
0Pm (1) < Fa(t) + 02\ @m()dt (@ () = [ VO™ F + V™ [} (239

0
a; = min (Mg, p1), @g = max (1 + ¢% 4 L?, 2xcy)
Vo) = Fr(t) + Yall vo llo® + Eull o i
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The function ¥, is positive, bounded, and independent of ™M . Using the
Gronwall inequality for the estimate (2. 14) [3], we have

o Tt = maxeqicr i (f)
Corollary:

1) vi™ (or v(™) remains bounded in L (0, Ty V) (orin Ly (0, Tp;
H)).

2) The solution V(™) can be continued to some time segment T for any m.

3) We have for the functions V(™ and v'(™

VM&ELe (0,T, Vo), vV™W&ELe (0, T; Hy) (2.15)

Convergence of a sequence of approximate sol-
utions., It follows from (2. 15) that a subsequence V) can be extracted from the
sequence V(™ such that v(#) (v'0)) will converge weakly to v (v°) in Lo (0,T;
Vo) (orin Lo (0, T; Hy)).

Let us show that v (f) satisfies the equation and intitial conditions (1,7), We _
introduce the space of functions

Ho
G={e:9 = 2 %:()wi, :=C*(0,T1), 9:(T) = 0}

Here W, is a finite integer, Replacing 6V by @ in (2.6) and integraﬁng the expre-
ssion obtained, we find

T (2.16)
S {— (v'®), @) + (VE [v® + u,], @) —(fo, @) — (F, @)r} dt =
0
Ve, @ (0), VO=G (b =m > o)
Passing to the limitin M in (2, 16), we obtain
(2.17)

T
${— v, )+ (VE v + wl, @) — (£, @) — (F, )} dt = (vo', @(0)),
Ve=G

Since finite linear combinations of W; are compact in ¥V, , then (2,17) is valid for
any @ = C* (10, T}; Vy), @(T) = 0. Therefore, the equality
V'+ VE[v4 ) =@ (P, =, 9) + (F,9)r) (2.18)
is valid in the sense of distributions in [0, 71 with values in Vo. It hence follows
that v & Lo (0, T; V’). Wesee that Vv (f) satisfies the initial conditions (1. 7).
Let us compare the scalar product of (2.18) and @ & G with (2.17), We obtain
(vo', @(0)) = (v'(0), @ (0)) V=G

Therefore, V' (0) = v,". There results from the convergence of the sequence
of approximate solutions that v®) = vy — v (0), which means that v (0) = v,.
Since u = u, -+ v, we arrive at the deduction that U satisfies all the conditions
of the theorem,

3. Uniqueness of the solutions Letusprove two theorems
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setting forth the uniqueness of the solutions in the case of stationarity of the solutions
and in the case of sufficient smoothness of the solutions, namely, u, u’ & H, (Q).
We introduce the Hamilton functional

H = '3(p, p) + E [v + uo] — (® (), v) @1

Here p = Vv, (D, v) = (fo’ v) + (¥, V)r, Vv V,. Letusreplace the
variational equation (1,7) by the canonical equations

dp/dt = — V,H = — VE [v + u,] + ®(2) (3.2)
dvjdt =V ,H =p
" ’fst;e first equation in (3, 2) is considered in the space H_, (2) and the second in
o (82).

We assume that (p, V), (p + Ap, v + Av) are two solutions of (3, 2) corres-
ponding to the same initial conditions (AP and AV are zero at the initial instant),
Then the functions AP and AV are a solution of the system of equations

dAp/dt = — (VE [u + Av] — VE [u]) (3.3
dAv/dt = Ap (u= v+ u,)

Let us. define the functional W (Ap, Av, t) according to the equality
W =1/3(Ap, Ap) + E [u 4 Av] — E [u] — (VE [u], Av) 8.9

We note that it is a Hamilton functional for (3, 3), which means thatitstotal deriv-
ative has the following form because of (3. 3)

dW/dt = W (0t = (VE [u 4+ Av] — VE [u], u) — (V2E [u] u’, Av) (3.5)

Theorem (stationary case ) Let thesolution Vv of(1.7) be such
that u = u, 4 v is independent of the time, and the functional E [u] is convex,
ioe..

E {u + Av] — E [u] — (VE [u], Av) > a || Av |;2 (3.6)
(@>0,]|Av |l <k, B > 0)

Then the solution v is unique,
Note 4, The stationary solution corresponds either to the equilibrium position
of the system for which the boundary conditions (1. 5) and the extemal forces in (1. 4)
must be assumed stationary, or to the case when the deformed body is rigidly displac-
ed,
Note 5, Condition (3,6) can be replaced by a condition on the second Frechet
variation of the functional E [u] :
Iw—uwh<h(h>0), (VIE[W]Av, Av) > 2a|Av}y?
In fact, let 7, (v): [0, 11— R! andF, (t) = E [u 4 1Av] — E [u] — (VE {[u],. 1Av).
We have
dF, (1) / dv = (VE {u + tAv] — VE [u], Av) (3.7
1AV |y < h, d2Fy(x)/d1?=(V3E [u+ tAV] Av, AV) > 2a |l Av |,

Integrating the second equation in (3, 7) twice with respect to 7, we obtaia(3. 6).



Solutions of certain classes of dynamic problems 139

Proof of the theorem. Since u isindependent of the time, the
functional W defined by (3. 4), also does not contain the time explicitly. It then
follows from (3, 5) that the functional W (AP, Av) is constant and equal to zero since

Ap == Av =0 at the initial time. Because of (3,6), we have for ||Av|; < &
W{(Ap, Av) > 2 | Ap [lo* +a[|Av |,
Therefore for £ & [0, 7] wehave Ap = Av = ( aad the solution is unique,
Theorem (dynamic case) If
. . . . .8
0=V uEH Q) (U< 8.8
weeVo, [[Wli<les, (VEE[w](Av, Av), W) M A |l

where ¢;, €3, M are positive constants and condition (83, 6) is valid, then the solution
v (f) of (1,7) is unique.
Note 6, The first condition in(3,8) is satisfied if v' = H; (Q) since uy’
= V, according to the Note 2.
Proof of the theorem Letusconsiderthe function

F3(t) = (VE [u + tAv] — VE [u], u’) —
(V:E [ulw’, 1Av) (0<t<<1)

for which the following relations are valid:
F,(0)=0, F,(1) =0W/édt, dF;(0)/dv =0 (3.9
d*F, | dt* = (V°E lu + ©Av] (Av, yv), u°)

Here V2E [u] and VIE [u] are the second and third Frechet differentials of the
functional E [u] [6].
Estimating the right side of the last relationship in (3, 9) with (3. 8) taken into
account, we arrive at the inequality
&’ F, / di®* < M || Av l?
Integrating twice with respect to 1, we obtain
Fo (1) = 0w/ ot <Y M| Av |2
Integrating of (3. 5) yields
t
W) —W O <4 M| av |d
L

We note that W (0) = 0, and according to (3. 6) we strengthen the inequality
(3.10):

(3.10)

!

8l + AV < g § (- 18p 6 + ol Av ) dt

o

There follows from the Gronwall inequality

t<(0,T], YzlAplle® +-afAv | <0
This latter is possible for Ap = Av = (, therefore, the solution is unique.
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